3272 MOTOR AVENUE PARKLET
PRE-INSTALLATION EXISTING
CONDITIONS REPORT TEAM

Principal Investigators
Miguel Núñez and Chelsea Richer,
Fehr & Peers

Research Design & Methodology
Robin Abad Ocubillo, Parklet Studies

Research Project Coordination
Valerie Watson, LADOT;
Jeremy Klop, Fehr & Peers

Primary Data Collection
Kevin Deal and Juan Castro,
National Data & Surveying Services;
Fehr & Peers

Secondary Data Collection
Michael Samuelson and
Jeremiah LaRose, Fehr & Peers

Information Architecture
Michael Manalo, Consultant to LADOT;
Jacqui Swartz, LADOT (formerly Fehr & Peers)

Graphic Production
Cullen McCormick, Fehr & Peers
ABOUT PROJECT EVALUATION

LADOT is committed to understanding and reporting on how projects impact neighborhoods, and evaluating their overall effectiveness in achieving project goals. By using established metrics that illuminate how new public spaces and street design impact the life of the street, we can track trends over time, evaluate project performance, and inform future program direction.

Methodical observations and data gathering at a site—both before and after installation—help to understand the potential impacts of an LADOT project. Pedestrian and bicycle rider counts, vehicle volumes, and speed data collected before and after installation allow us to describe changes in safety, mobility, and accessibility. Other tools—such as interviews of pedestrians, occupants of expanded pedestrian spaces, and local business operators—capture perceptions of the neighborhood and the project itself. Other data available through local, state, and federal sources—such as collision reports or sales tax receipts—are also analyzed before and after projects are installed, giving us more information to understand what may change.
INTRODUCTION

GREAT STREETS FOR LOS ANGELES

Measuring Project Impact: A Citywide Priority

The Strategic Plan for the City of Los Angeles Department of Transportation (LADOT), *Great Streets for Los Angeles*, and the Mayor’s Great Streets Initiative focus on transforming our streets, our largest public asset, to support desired outcomes including increased public safety, enhanced local culture, economic vitality and great neighborhoods.

![A Safe City](image1)

A Safe City

![A Livable and Sustainable City](image2)

A Livable and Sustainable City

![A Prosperous City](image3)

A Prosperous City

![A Well Run City](image4)

A Well Run City

LADOT supports these goals by cost effectively repurposing underutilized public space into gathering places for Angelenos to come together, whether they walk, bike, drive, or take transit.

The 3272 Motor Avenue Parklet and other People St projects change streets with temporary treatments, including plazas and parklets, that lay the groundwork for permanent changes in street design. Such projects are integral to the City’s Great Streets toolbox, and facilitate implementation and evaluation of LADOT’s Strategic Plan, *Great Streets for Los Angeles*, and the City’s *Mobility Plan 2035*.
The 3272 Motor Avenue Parklet evaluation project (both this report and the post-installation report) is an opportunity to document performance metrics that assess how innovative street design supports these Great Streets goals:

Safety
- Reported Collisions by Party Involved
- Vehicular Speed
- Wrong Way Bicycle Riding

Livability
- Walking and Bicycling Activity
- Gender Balance
- Mode of Arrival
- Nuisance Activity on the Sidewalk
- User Perception

Prosperity
- Sales Tax Revenues
- Duration of Visit
- Frequency of Visit

Governmental Efficiency
- The evaluation itself is contributing to reaching this goal

This report highlights significant and interesting findings from the above categories. Complete project data are available at data.lacity.org or upon request via peoplest@lacity.org.
ABOUT THIS EXISTING CONDITIONS REPORT

This report offers an in-depth look at livability, safety, and prosperity prior to the installation of the 3272 Motor Avenue Parklet. Primary and secondary data were collected starting in September 2014. A corresponding post-installation study (under separate cover) will be conducted in 2015 to compare the existing conditions reported in this document with those observed after the project has been in place for a year. The purpose of the evaluation is not to find a direct causal effect from the project, but rather to demonstrate how the project may contribute to changes across a variety of indicators, recognizing that additional factors contribute.

THE STUDY AREA

The catchment area for this project, shown on the next page, consists of the block faces on Motor Avenue, Irene Street and National Boulevard. Observations were generally limited to those actions that occurred on the public right-of-way, including the street and sidewalk, along Motor Avenue. The catchment area also includes transit access and the commercial establishments facing the street.

METHODOLOGY

Using primary data collection methods, the project evaluation team observed the ways in which people walked, rode bicycles, and drove, in order to understand the level and quality of activity in the public realm.

Secondary, contextual data were also collected to measure traffic speeds and volumes, collisions, transit use, and economic transactions.

AT A GLANCE

City Council District
District 5, Councilmember
Paul Koretz

Neighborhood Council District
Palms

Business Improvement District
None

Community Plan Area
West Los Angeles

Mobility Plan 2035
Motor Avenue designations:
• Avenue II
• Pedestrian Enhanced District
INTRODUCTION

PROJECT SITE

3272 MOTOR AVENUE PARKLET CATCHMENT AREA

Palms

Cheviot Hills

IRENE ST
NATIONAL BLVD
ROSE AVE
WOODBINE ST
PALMS BLVD
OVERLAND AVE
ROSE AVE
WOODBINE ST
LAWLER ST
WESTMINSTER AV
TABOR ST
KEYSTONE AVE
MENTONE AVE
MOTOR AVE
VINTON AVE
JASMINE AVE
CLARINGTON AVE
MANNING AVE
EDITH ST
NATIONAL BLVD
SANTA MONICA FREEWAY
SANTA MONICA FREEWAY
EXPO LINE PHASE 2 - UNDER CONSTRUCTION
LOS ANGELES
Primary Data Collection Times

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrian & bicyclist volume</th>
<th>Vehicle traffic volume</th>
<th>Vehicle speed survey</th>
<th>Activity scan of blockface</th>
<th>Pedestrian intercept survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 - 8 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>8 - 9 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>9 - 10 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>10 - 11 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>11 AM - 12 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>12 - 1 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>1 - 2 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>2 - 3 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>3 - 4 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>4 - 5 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>5 - 6 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>6 - 7 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>7 - 8 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>8 - 9 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>10 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>7 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Note: Business operator questionnaires were also conducted as business operators were available.
Questionnaire Summary

<table>
<thead>
<tr>
<th>Number of pedestrian intercept surveys conducted</th>
<th>Number of business operator surveys conducted</th>
</tr>
</thead>
<tbody>
<tr>
<td>62 10/1/14</td>
<td>6 11/14/14 & 12/12/14</td>
</tr>
<tr>
<td>38 10/4/14</td>
<td>6 TOTAL</td>
</tr>
<tr>
<td>100 TOTAL</td>
<td>6 TOTAL</td>
</tr>
</tbody>
</table>

Conducted in person

Conducted in-person or via telephone

Data Collection Locations

[Map showing data collection locations with symbols for project site, catchment area, vehicle count location, and pedestrian & bicycle count location.]
Summary of Key Report Findings

Percent of speeding vehicles

Pedestrian survey respondents who visit the site daily, by mode

- Car: 22
- Pedestrian: 21
- Bus: 12
- Bicycle: 0
INTRODUCTION

Patron primary travel mode to area

<table>
<thead>
<tr>
<th>Mode</th>
<th>Estimated by merchants</th>
<th>Stated by pedestrian survey respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>100%</td>
<td>58%</td>
</tr>
<tr>
<td>Walking</td>
<td>0%</td>
<td>26%</td>
</tr>
<tr>
<td>Biking</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Public transit</td>
<td>0%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Presence of women

- Census: 52%
- Pedestrian survey: 52%
- Walking - Weekend: 27%
- Walking - Weekday: 40%
- Biking - Weekend: 28%
- Biking - Weekday: 38%
Safety

Safety data are assembled from a variety of sources. Collision data are drawn from the Statewide Integrated Traffic Records System (SWITRS) between 2007 and 2011, a service of the California Highway Patrol which reflects all reported collisions in California. Traffic counts were also collected, providing data on the volume and speed of vehicles traveling through the Motor Avenue corridor. In addition, data on public perception of safety were collected using on-the-street pedestrian questionnaires.

KEY STATISTICS

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>Percent of pedestrians that reported the neighborhood was safe (see page 20 for more information on pedestrian perceptions).</td>
</tr>
<tr>
<td>0</td>
<td>Number of fatal or severe injury collisions in the project catchment area between 2007 and 2011.</td>
</tr>
<tr>
<td>0</td>
<td>Number of pedestrian collisions in the project catchment area between 2007 and 2011.</td>
</tr>
<tr>
<td>1</td>
<td>Number of bicycle collisions in the project catchment area between 2007 and 2011.</td>
</tr>
<tr>
<td>9</td>
<td>Number of vehicular collisions in the project catchment area between 2007 and 2011.</td>
</tr>
</tbody>
</table>

KEY FINDINGS

Within a half-mile radius of the project site, pedestrians and bicyclists were overrepresented in fatal or severe collisions. A higher percentage of speeding vehicles were observed in the southbound direction than the northbound direction.
Collision Summary (2007 - 2011)

Project catchment area

Note: During this time period, no pedestrian collisions were reported in the catchment area.

Half-mile radius around study area

WHAT HAVE WE LEARNED?

Between 2007 and 2011, there were zero pedestrian collisions, one bicycle collision, and 9 vehicular collisions reported in the project catchment area, for a total of 10 collisions.

In the half-mile radius around the project site, for the same time span, there were 25 bicycle collisions, 30 pedestrian collisions, and 190 vehicle collisions, for a total of 245 collisions reported, or an average of about 49 collisions per year.

Between 2007 and 2008 and between 2009 and 2011, a decrease in the total number of reported collisions was observed within a half mile radius of the project site.
Collision Locations (2007 - 2011)

WHAT HAVE WE LEARNED?
Between 2007 and 2011, the highest concentration of vehicular collisions in the project catchment area was at the intersection of National Boulevard and Motor Avenue, with 8 collisions reported.

There were no reported pedestrian collisions in the project catchment area over the same time period; however, one bicycle collision occurred at the intersection of National Boulevard and Motor Avenue.
Collisions by Mode and Severity
HALF-MILE RADIUS AROUND PROJECT SITE (2007-2011)

<table>
<thead>
<tr>
<th>Mode</th>
<th>KSI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>29% 2 KSI</td>
<td>12% 30</td>
</tr>
<tr>
<td>Bicycle</td>
<td>29% 2 KSI</td>
<td>10% 25</td>
</tr>
<tr>
<td>Vehicle</td>
<td>42% 3 KSI</td>
<td>78% 190</td>
</tr>
<tr>
<td>Total</td>
<td>100% 7 KSI</td>
<td>100% 245</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?
Pedestrian and bicycle collisions resulting in a fatality or severe injury (KSI) are overrepresented as a subset of all KSI collisions, when compared to the overall rates of pedestrian and bicycle collisions as a subset of all collisions. Within a half mile from the project site, pedestrian collisions made up 12% and bicycle collisions made up 10% of all collisions, but pedestrian and bicycle KSI collisions made up 29% each of all KSI collisions. There were no fatal or severe injury (KSI) collisions in the project catchment area from 2007-2011.
Speeding Vehicles by Day and Direction

MOTOR AVENUE BETWEEN IRENE STREET AND NATIONAL BOULEVARD

![Diagram of Motor Avenue between Irene Street and National Boulevard showing speeding vehicles by day and direction.]

WHAT HAVE WE LEARNED?

Overall, a greater percentage of vehicles were “speeding” (driving over the posted speed limit) on the weekend day than on the weekday. On the weekend day, approximately 39% (4 out of 10) of all vehicles were found to be speeding. On the weekday, approximately 28% of vehicles were found to be speeding.

Speeding was also slightly higher in the southbound direction than in the northbound direction on each day. On the weekend day, volumes were lower in the southbound direction, suggesting that lower volumes could correspond to excess capacity and be inversely correlated with higher speeds.

However, on the weekday, volumes were lower in the southbound direction, which indicates that vehicle volumes and speeds are not always inversely correlated. (See page 23 for more information about vehicle volumes.)
Livability

Data on livability in the area around the 3272 Motor Avenue Parklet were collected from on-the-street pedestrian questionnaires and business operator questionnaires. They offer a view into perceptions of the area, local quality of life, transportation patterns, behavior patterns, and the role the neighborhood plays in the lives of visitors and residents.

KEY STATISTICS

<table>
<thead>
<tr>
<th>58%</th>
<th>26%</th>
<th>76%</th>
<th>88%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of survey respondents who reported arriving in the neighborhood by car.</td>
<td>Percent of survey respondents who reported arriving in the neighborhood on foot.</td>
<td>Percent of survey respondents who visit the neighborhood daily or several times a week.</td>
<td>Percent of survey respondents who think the neighborhood is clean.</td>
</tr>
</tbody>
</table>

KEY FINDINGS

- During the weekday count period, almost 19 times as many vehicles were counted as pedestrians and cyclists.
- During the weekend count period, almost 18 times as many vehicles were counted as pedestrians and bicyclists.
- Less than half of the people observed bicycling or walking were female. According to the US Census, the area within a half-mile radius of the project site is 52% female.
Primary Mode of Transportation to Neighborhood

Note: Width of line indicates percentage.

WHAT HAVE WE LEARNED?

More pedestrians (58%) responded that they arrived to the area primarily by car than by any other mode. Twenty-six percent reported primarily arriving on foot.

One hundred percent of the business operators surveyed thought their patrons arrived primarily by car.

These findings reveal that business operators may incorrectly assume their customers only drive, when many customers may use other modes as their primary choice.
WHAT HAVE WE LEARNED?

Frequent visits to an area suggest that it serves as a neighborhood destination. With 76% of survey respondents visiting the area at least several times a week, this location appears to serve as a local destination.

The highest percentage of survey respondents (40%) said they were in the area to eat, drink, shop, or meet friends, and the next highest percentage of survey respondents (27%) said they were in the area because they live there.

These reasons indicate that while the area does appear to have local significance, frequency of visits appears to most closely be correlated with living in the area or recreating in the area. Page 20 illustrates the full set of survey responses to the reason for visiting the area, and other pedestrian perceptions.
Perceptions of Neighborhood & Reason for Visit

- **Neighborhood is clean**: 88%
- **Neighborhood is safe**: 90%
- **Neighborhood is unattractive**: 21%

- **Passing through**: 7%
- **Multiple reasons**: 9%
- **Work here**: 26%
- **Live here**: 27%
- **Eat/drink, meet friends, music/art, or shopping**: 40%

Note: Size of outline corresponds to percentage. Top percentages are each out of 100; bottom percentages all add to 100
WHAT HAVE WE LEARNED?

On the weekday, a total of 14,963 vehicles were counted over a 24-hour period.

Between 7 AM and 6 PM, 10,991 vehicles were counted, compared to 292 pedestrians and 289 bicycles over the same time period.

During this time period, bicyclists and pedestrians together accounted for about 5% of all travel in the catchment area.

On the weekend day, a total of 9,688 vehicles were counted over a 24-hour period.

Between 11 AM and 6 PM, 5,108 vehicles were counted, compared to 148 pedestrians and 153 bicycles over the same time period.

During this time period, bicyclists and pedestrians together accounted for about 6% of travel in the catchment area.
Pedestrian Characteristics (SCREENLINE)

WHAT HAVE WE LEARNED?

Over the 11 hour weekday data collection period, a total of 292 pedestrians were counted.

Over the seven hour weekend data collection period, a total of 148 pedestrians were counted.

On the weekday, about 27 pedestrians per hour were counted. On the weekend, about 21 pedestrians per hour were counted.

A higher percentage of pedestrians observed on the weekday were female (40%) compared to the weekend day (27%). This difference is also reflected in the bicyclist observations.

Between 1% and 3% of pedestrians observed were using a wheelchair, and about 7% of pedestrians observed were using a skateboard.

Between 1% and 3% of pedestrians observed were old, and between 1% and 6% of pedestrians observed were young.
Bicyclist Characteristics (SCREENLINE)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Weekday</th>
<th>Weekend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong way</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Under 16</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Over 65</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>No helmet</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>Sidewalk</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Female</td>
<td>38%</td>
<td>28%</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?

Over the 11 hour weekday data collection period, a total of 289 bicyclists were counted. Over the seven hour weekend data collection period, a total of 153 bicyclists were counted.

On the weekday, about 26 bicyclists per hour were counted. On the weekend, about 22 bicyclists per hour were counted.

A higher percentage of pedestrians observed on the weekday were female (38%) compared to the weekend day (28%). This difference is also reflected in the pedestrian observations.

A very low percentage of bicyclists were observed to be young or old, on both the weekend and the weekday.

Between 5-7% of bicyclists observed were not wearing a helmet. Between 1-2% were riding on the sidewalk, and 3% were riding in the wrong direction.
Stationary Activities

<table>
<thead>
<tr>
<th>Observed behaviors</th>
<th>13</th>
<th>8</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formally sitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In a pair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiting for transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On mobile device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiting to cross</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed characteristics</th>
<th>19</th>
<th>15</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stationary Activity by Time of Day

WHAT HAVE WE LEARNED?

High levels of people engaging in stationary activities can indicate that a public space feels comfortable, safe, and desirable to the people who use it.

In particular, 13 people were observed formally sitting, and eight people were observed waiting for transit. Fewer people were observed leaning or informally sitting.

Overall, relatively low levels of stationary behavior were observed in the project area, compared to overall levels of pedestrian, bicycle, and vehicle activity.

Fifteen out of 34 people observed participating in a stationary activity, or about 44%, were female. This is higher than the observed rates of female pedestrians and bicyclists.
Physical Assets in Public Right-of-Way
MOTOR AVENUE BETWEEN IRENE STREET AND NATIONAL BOULEVARD

<table>
<thead>
<tr>
<th>Feature</th>
<th>Quantity</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike corral</td>
<td>0</td>
<td>None in the catchment area</td>
</tr>
<tr>
<td>Bike rack</td>
<td>2</td>
<td>Inverted U-racks all in good condition</td>
</tr>
<tr>
<td>Bus shelter</td>
<td>0</td>
<td>Bus stops do not have shelters</td>
</tr>
<tr>
<td>Public bench</td>
<td>2</td>
<td>Good condition; no shade</td>
</tr>
<tr>
<td>Street light</td>
<td>4</td>
<td>Area generally provides sparse lighting with none at pedestrian scale</td>
</tr>
<tr>
<td>Trash</td>
<td>3</td>
<td>Good condition and none have lids</td>
</tr>
<tr>
<td>Tree</td>
<td>13</td>
<td>Many of the trees are immature and provide little shade</td>
</tr>
<tr>
<td>Planting strip</td>
<td>0</td>
<td>None in the catchment area</td>
</tr>
<tr>
<td>Private seating</td>
<td>1</td>
<td>Limited seating near local restaurants</td>
</tr>
</tbody>
</table>
Related Key Assets
MOTOR AVENUE BETWEEN IRENE STREET AND NATIONAL BOULEVARD

<table>
<thead>
<tr>
<th>Feature</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shade</td>
<td>Very little shade provided by trees</td>
</tr>
<tr>
<td>Sidewalks</td>
<td>The sidewalks are generally adequate quality and width</td>
</tr>
</tbody>
</table>
Prosperity

Data relating to the prosperity of the area are assembled from three sources: business questionnaires, pedestrian questionnaires, and sales tax receipts. The questionnaires provide insight into merchants’ and customers’ behaviors and perceptions. The tax data provide a quantitative complement to the insights gained through the questionnaires.

KEY STATISTICS

<table>
<thead>
<tr>
<th>12-2 PM</th>
<th>$5-10</th>
<th>60+ MINS</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-2 PM</td>
<td>$5-10</td>
<td>60+ MINS</td>
<td>31</td>
</tr>
<tr>
<td>Busiest time of day on weekends and weekdays as reported by business operators.</td>
<td>Average amount of money spent per visit to the area by people who arrived on foot.</td>
<td>Most common length of stay per visit for all travel modes.</td>
<td>Number of active businesses in the study area in 2014.</td>
</tr>
</tbody>
</table>

KEY FINDINGS

Overall, people who reach the area on foot and in car tend to visit most frequently. Over the last 10 years, the number of businesses in the area has generally remained stable. Over the last 10 years, business tax revenues have fluctuated.
Busiest Times of Day

WHAT HAVE WE LEARNED?

Based on the business operator questionnaire, 12 PM - 2 PM was the most common response to “When are your two busiest times of day?” for both weekends and weekdays. The busiest time of day for businesses may correspond to the busiest time of day overall, and may relate to the type of commercial activity that is most common in the area. On Motor Avenue, these responses reflect a typical residential and recreational pattern, with a lot of evening activity after people get home from work.

Note: Opening and closing times are approximate. Number of weekday and weekend responses differs because some businesses are closed on weekends. Pedestrian activity is based on counts described on page 23.
Spending & Frequency of Visit by Mode

Average amount spent per visit

<table>
<thead>
<tr>
<th>Mode</th>
<th>$0-5</th>
<th>$5-10</th>
<th>$10-30</th>
<th>$30+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Bicycle</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Vehicle</td>
<td>6</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Transit</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

No bicyclists were surveyed

Frequency of visits

- Less than once a month
- Once a month
- Several times a month
- Once a week
- Several times a week
- Daily
Duration of Stay by Mode

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Pedestrian</th>
<th>Bicycle</th>
<th>Vehicle</th>
<th>Transit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10 1</td>
<td>0-10 0</td>
<td>0-10 1</td>
<td>0-10 0</td>
</tr>
<tr>
<td></td>
<td>10-30 1</td>
<td>10-30 0</td>
<td>10-30 0</td>
<td>10-30 1</td>
</tr>
<tr>
<td></td>
<td>30-60 3</td>
<td>30-60 0</td>
<td>30-60 4</td>
<td>30-60 1</td>
</tr>
<tr>
<td></td>
<td>60+ 21</td>
<td>60+ 0</td>
<td>60+ 52</td>
<td>60+ 14</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED? (PREVIOUS PAGE)
For all modes, people most commonly responded that they visited the area daily. For pedestrians and people who drove, more people responded that they spent $10-$30 than any other category. For transit riders, more people responded spending $0-$5 than any other category.

WHAT HAVE WE LEARNED? (ABOVE)
None of the survey respondents used a bicycle as their primary mode of transportation.

The most common length of stay for all modes was one hour or more.
WHAT HAVE WE LEARNED?
The City of Los Angeles collects a business tax for most businesses in the city based on “tax measures”—typically retail/wholesale sales or payments for services received. Tax data were aggregated across all businesses in the study area to protect confidentiality, and reflect overall economic vitality in the area.

Business tax measures were higher in 2014 than in 2005, and reflect some fluctuation between 2008 and 2014.

WHAT HAVE WE LEARNED?
The number of businesses paying business tax is relatively representative of the total number of businesses in the area; the data do not include businesses that are not required to pay the tax or businesses that evade taxation.

Over the last 10 years, the number of businesses in the area has remained relatively stable, with between 26 and 33 businesses paying business tax each year. In 2014 there were slightly fewer businesses paying business tax than in 2005.
Context

Demographic information was assembled from the US Census American Community Survey 5-Year Estimates from 2008-2012 (ACS). In addition, demographic information was collected as part of the pedestrian surveys. This section presents findings from both sources, to demonstrate the differences between ACS data and primary data collected by the People St project team.

The differences between ACS data and pedestrian survey data are likely related to the fact that the pedestrian survey captured people who do not live in the area, and are therefore not reflected in the ACS, but who were in the area for work, shopping, or other purposes on the day the surveys were collected.

KEY STATISTICS

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52%</td>
<td>Percent of residents in the area who are female according to the ACS.</td>
</tr>
<tr>
<td>48%</td>
<td>Percent of residents in the area who are male according to the ACS.</td>
</tr>
<tr>
<td>81%</td>
<td>Percent of residents in the area with some college, an Associates degree, a Bachelors degree, or higher, according to the ACS.</td>
</tr>
<tr>
<td>55%</td>
<td>Percent of residents in the area who are under 35 years old, according to the ACS.</td>
</tr>
<tr>
<td>9%</td>
<td>Percent of residents in the area who are over 65 years old, according to the ACS.</td>
</tr>
<tr>
<td>62%</td>
<td>Percent of residents in the area who are White, according to the ACS.</td>
</tr>
<tr>
<td>23%</td>
<td>Percent of residents in the area who are Asian, according to the ACS.</td>
</tr>
<tr>
<td>21%</td>
<td>Percent of residents in the area who identify as Latino or Hispanic, according to the ACS.</td>
</tr>
</tbody>
</table>
Gender Split of Community

Gender Split of Community

<table>
<thead>
<tr>
<th>Pedestrian Survey</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>52% Female</td>
<td>52% Female</td>
</tr>
<tr>
<td>48% Male</td>
<td>48% Male</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?

According to the ACS, the community is 48% male and 52% female. The pedestrian survey respondents were also 48% male and 52% female.
Educational Attainment

WHAT HAVE WE LEARNED?
Almost 60% of people living in this area have a Bachelor's degree or higher. An additional 23% have an Associate's degree or some college.
WHAT HAVE WE LEARNED?
According to the ACS, the majority of residents in this area (73%) are between 18 and 64. About 17% are under 18 years old, and about 9% are over 65.

Compared to the Census’ ACS, the pedestrian survey over-represented people between 18-34 years old, and under-represented people under 18 years old.
WHAT HAVE WE LEARNED?

According to the ACS, the predominant racial identity of residents in this area is White (62%), with 23% identifying as Asian and 9% identifying as Black. Additionally, 21% of residents identify as Hispanic or Latino.

Compared to the ACS, the pedestrian survey over-represented White respondents.
For information on People St
visit peoplest.lacity.org
e-mail peoplest@lacity.org

fb.com/ladotpeoplest
www.flickr.com/groups/peoplest
@LADOTPeopleSt
@LADOTPeopleSt

IMAGE CREDITS
All photos: LADOT/Jim Simmons
People St is a program of the City of Los Angeles Department of Transportation (LADOT) in collaboration with the City of Los Angeles Departments of Public Works and City Planning, the Office of Mayor Eric Garcetti, and the Los Angeles County Metropolitan Transportation Authority (Metro).

PEOPLE ST PROJECT TEAM

Environmental Graphic Design and Brand Identity
Emily Morishita and Raymond Dang

Application Manual and Project Evaluation Manual
Robin Abad Ocubillo, Parklet Studies

Architecture and Kit-of-Parts Design
Daveed Kapoor, utopiad.org
Rob Berry, Berry and Linné

Information Architecture/Website
Mike Manalo, Consultant to LADOT

CITY OF LOS ANGELES

Department of Transportation
Seleta Reynolds, General Manager
Dan Mitchell
Zaki Mustafa
Margot Ocañas
Valerie Watson
Mike Manalo
Michelle Mowery
Elizabeth Gallardo
Jay Kim
Tomas Carranza
Christopher Hy
Miles Mitchell
Manoochehr Adhami
Tim Conger
Tony Ho
Tim Frémaux

Department of City Planning
Simon Pastucha

Bureau of Engineering
Michael Kantor
Lem Paco
Randy Price
Esam Amarragy

Bureau of Street Services
Lance Oishi

Bureau of Contract Administration
Russ Strazella
Zernan Abad

City of Los Angeles Fire Department
Captain Luke Milick

Metro
Julia Salinas
For information on People St
visit peoplest.lacity.org
e-mail peoplest@lacity.org