HOPE STREET PARKLET
PRE-INSTALLATION EXISTING CONDITIONS REPORT TEAM

Principal Investigators
Miguel Núñez and Chelsea Richer, Fehr & Peers

Research Design & Methodology
Robin Abad Ocubillo, Parklet Studies

Research Project Coordination
Valerie Watson, LADOT; Jeremy Klop, Fehr & Peers

Primary Data Collection
Kevin Deal and Juan Castro, National Data & Surveying Services; Fehr & Peers

Secondary Data Collection
Michael Samuelson and Jeremiah LaRose, Fehr & Peers

Information Architecture
Michael Manalo, Consultant to LADOT; Jacqui Swartz, LADOT (formerly Fehr & Peers)

Graphic Production
Cullen McCormick, Fehr & Peers
LADOT is committed to understanding and reporting on how projects impact neighborhoods, and evaluating their overall effectiveness in achieving project goals. By using established metrics that illuminate how new public spaces and street design impact the life of the street, we can track trends over time, evaluate project performance, and inform future program direction.

Methodical observations and data gathering at a site—both before and after installation—help to understand the potential impacts of an LADOT project. Pedestrian and bicycle rider counts, vehicle volumes, and speed data collected before and after installation allow us to describe changes in safety, mobility, and accessibility. Other tools—such as interviews of pedestrians, occupants of expanded pedestrian spaces, and local business operators—capture perceptions of the neighborhood and the project itself. Other data available through local, state, and federal sources—such as collision reports or sales tax receipts—are also analyzed before and after projects are installed, giving us more information to understand what may change.
INTRODUCTION

GREAT STREETS FOR LOS ANGELES

Measuring Project Impact: A Citywide Priority
The Strategic Plan for the City of Los Angeles Department of Transportation (LADOT), Great Streets for Los Angeles, and the Mayor’s Great Streets Initiative focus on transforming our streets, our largest public asset, to support desired outcomes including increased public safety, enhanced local culture, economic vitality and great neighborhoods.

A Safe City

A Livable and Sustainable City

A Prosperous City

A Well Run City

LADOT supports these goals by cost effectively repurposing underutilized public space into gathering places for Angelenos to come together, whether they walk, bike, drive, or take transit.

The Hope Street Parklet and other People St projects change streets with temporary treatments, including plazas and parklets, that lay the groundwork for permanent changes in street design. Such projects are integral to the City’s Great Streets toolbox, and facilitate implementation and evaluation of LADOT’s Strategic Plan, Great Streets for Los Angeles, and the City’s Mobility Plan 2035.
The Hope Street Parklet evaluation project (both this report and the post-installation report) is an opportunity to document performance metrics that assess how innovative street design supports these Great Streets goals:

Safety
- Reported Collisions by Party Involved
- Vehicular Speed
- Wrong Way Bicycle Riding

Livability
- Walking and Bicycling Activity
- Gender Balance
- Mode of Arrival
- Nuisance Activity on the Sidewalk
- User Perception

Prosperity
- Sales Tax Revenues
- Duration of Visit
- Frequency of Visit

Governmental Efficiency
- The evaluation itself is contributing to reaching this goal

This report highlights significant and interesting findings from the above categories. Complete project data are available at data.lacity.org or upon request via peoplest@lacity.org.
ABOUT THIS EXISTING CONDITIONS REPORT

This report offers an in-depth look at livability, safety, and prosperity prior to the installation of the Hope Street Parklet. Primary and secondary data were collected starting in September 2014. A corresponding post-installation study (under separate cover) will be conducted in 2015 to compare the existing conditions reported in this document with those observed after the project has been in place for a year. The purpose of the evaluation is not to find a direct causal effect from the project, but rather to demonstrate how the project may contribute to changes across a variety of indicators, recognizing that additional factors contribute.

THE STUDY AREA

The catchment area for this project, shown on the next page, is Hope Street between 11th Street and 12th Street. Observations were generally limited to those actions that occurred on the public right-of-way, including the street and sidewalk. The catchment area also includes transit access and the commercial establishments facing the street.

METHODOLOGY

Using primary data collection methods, the project evaluation team observed the ways in which people walked, rode bicycles, and drove, in order to understand the level and quality of activity in the public realm.

Secondary, contextual data were also collected to measure traffic speeds and volumes, collisions, transit use, and economic transactions.

AT A GLANCE

City Council District
District 14, Councilmember
Jose Huizar

Neighborhood Council District
Downtown Los Angeles

Business Improvement District
South Park

Community Plan Area
Central City

Mobility Plan 2035
Hope Street designations:
• Avenue II
• Neighborhood Enhanced Network
• Pedestrian Enhanced Network
Primary Data Collection Times

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrian & bicyclist volume</th>
<th>Vehicle traffic volume</th>
<th>Vehicle speed survey</th>
<th>Activity scan of blockface</th>
<th>Pedestrian intercept survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 - 8 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>8 - 9 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>9 - 10 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>10 - 11 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>11 AM - 12 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>12 - 1 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>1 - 2 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>2 - 3 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>3 - 4 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>4 - 5 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>5 - 6 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>6 - 7 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>7 - 8 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>8 - 9 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>10 PM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>11 PM - 7 AM</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Note: Business operator questionnaires were also conducted as business operators were available
Questionnaire Summary

<table>
<thead>
<tr>
<th>Number of pedestrian intercept surveys conducted</th>
<th>Number of business operator surveys conducted</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 9/16/14</td>
<td>10 10/30/14 & 10/31/14</td>
</tr>
<tr>
<td>34 9/20/14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>132 TOTAL</td>
</tr>
<tr>
<td></td>
<td>10 TOTAL</td>
</tr>
</tbody>
</table>

Conducted in person

Conducted in-person or via telephone

Data Collection Locations
Summary of Key Report Findings

Patron primary travel mode to area

<table>
<thead>
<tr>
<th>Mode</th>
<th>Estimated by merchants</th>
<th>Stated by pedestrian survey respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>50%</td>
<td>42%</td>
</tr>
<tr>
<td>Walking</td>
<td>40%</td>
<td>39%</td>
</tr>
<tr>
<td>Bike</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>Bus</td>
<td>10%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Percent of speeding vehicles

- **Weekday**: 25%
- **Weekend**: 37%

Pedestrian survey respondents who visit the site daily, by mode

- **Walking**: 49%
- **Car**: 30%
- **Bus**: 12%
- **1%** other
INTRODUCTION

Summary of Key Report Findings

PROJECT SITE

- Presence of women
- Biking - Weekend: 36%
- Biking - Weekday: 33%
- Pedestrian survey:
 - Walking - Weekend: 37%
 - Walking - Weekday: 35%
- Census: 48%

Percent of speeding vehicles

- Weekday: 25%
- Weekend: 0%

Patron primary travel mode to area

- Estimated by merchants: 50%
- Stated by pedestrian survey respondents:
 - 40%
 - 0%
 - 10%
 - 39%
 - 0%

Busiest time of day for merchants, by number of survey responses

- Open - 12 PM: 2
- 12 PM - 2 PM: 8
- 2 PM - 5 PM: 4
- 5 PM - 7 PM: 3
- 7 PM - Close: 1

Top reasons for visiting area, from pedestrian surveys

- Live here: 43%
- Work here: 30%

Collisions, by mode (2007-2011)

- 1/2-mile radius around project site:
 - Car: 658
 - Pedestrian: 136
 - Bike: 94

- Project catchment area:
 - Car: 6
 - Pedestrian: 0
 - Bike: 0
Safety

Safety data are assembled from a variety of sources. Collision data are drawn from the Statewide Integrated Traffic Records System (SWITRS) between 2007 and 2011, a service of the California Highway Patrol which reflects all reported collisions in California. Traffic counts were also collected, providing data on the volume and speed of vehicles traveling through the Hope Street corridor. In addition, data on public perception of safety were collected using on-the-street pedestrian questionnaires.

KEY STATISTICS

<table>
<thead>
<tr>
<th>90%</th>
<th>0</th>
<th>0</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of pedestrians that reported the neighborhood was safe (see page 20 for more information on pedestrian perceptions).</td>
<td>Number of fatal or severe injury collisions in the project catchment area between 2007 and 2011.</td>
<td>Number of pedestrian collisions in the project catchment area between 2007 and 2011.</td>
<td>Number of vehicular collisions in the project catchment area between 2007 and 2011.</td>
</tr>
</tbody>
</table>

KEY FINDINGS

- Within a half-mile radius of the project site, pedestrians were overrepresented in fatal or severe collisions.
- A higher percentage of speeding vehicles were observed on a weekday than a weekend.
- A higher percentage of speeding vehicles were observed in the southbound direction than the northbound direction along Hope Street between 11th and 12th Streets.
Collision Summary (2007 - 2011)

Project catchment area

Note: During this time period, no pedestrian or bicycle collisions were reported in the catchment area. Therefore, only vehicle collisions are shown.

Half-mile radius around study area

WHAT HAVE WE LEARNED?
Between 2007 and 2011, there were no pedestrian or bicycle collisions and six vehicular collisions in the project catchment area.

In the half-mile radius around the project site, for the same time span, there were 94 bicycle collisions, 136 pedestrian collisions, and 658 vehicle collisions, for a total of 888 collisions reported, or an average of 178 collisions per year.

Between 2007 and 2008, a slight increase in the number of reported collisions was observed, across all modes. Overall, between 2007 and 2011, a decrease in reported collisions was observed for all modes.
Collision Locations (2007 - 2011)

During this time period, no pedestrian or bicycle collisions were reported in the catchment area. Therefore, only vehicle collisions are shown.

WHAT HAVE WE LEARNED?
Between 2007 and 2011, vehicular collisions in the project catchment area were concentrated at the intersections of Hope Street with 11th and 12th Streets. Three vehicle collisions were reported at each intersection.

As noted previously, no bicycle or pedestrian collisions were reported in the catchment area between 2007 and 2011.
Collisions by Mode and Severity

HALF-MILE RADIUS AROUND PROJECT SITE (2007-2011)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Killed or severely injured (KSI) collisions by mode: percent of all KSI collisions and count</th>
<th>Total collisions by mode: percent of all collisions and count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>38% 10</td>
<td>15% 136</td>
</tr>
<tr>
<td>Bicycle</td>
<td>8% 2</td>
<td>11% 94</td>
</tr>
<tr>
<td>Vehicle</td>
<td>54% 14</td>
<td>74% 658</td>
</tr>
<tr>
<td>Total</td>
<td>100% 26</td>
<td>100% 888</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?

Pedestrian collisions resulting in a fatality or severe injury (KSI) are overrepresented as a subset of all KSI collisions, when compared to the overall rates of pedestrian collisions as a subset of all collisions. Pedestrian collisions made up 15% of all collisions, but pedestrian KSI collisions made up 38% of all KSI collisions within a half mile from the project site, from 2007-2011. There were no fatal or severe injury (KSI) collisions in the project study area from 2007-2011.
Speeding Vehicles by Day and Direction
HOPE STREET BETWEEN 11TH STREET AND 12TH STREET

WHAT HAVE WE LEARNED?
Overall, a greater percentage of vehicles were “speeding” (driving over the posted speed limit) on the weekday than on the weekend day. On both the weekday and the weekend day, a higher percentage of vehicles were speeding in the southbound direction than in the northbound direction.

On both the weekend day and the weekday, volumes were lower in the southbound direction, suggesting that lower volumes could correspond to excess capacity and be inversely correlated with higher speeds. (See page 23 for more information about vehicle volumes.)

Although a higher percentage of speeding vehicles were observed on the weekday than on the weekend, the overall vehicle volumes were higher on the weekday. This indicates that vehicle volumes and speeds are not always inversely correlated.
Livability

Data on livability in the area around the Hope Street Parklet were collected from on-the-street pedestrian questionnaires and business operator questionnaires. They offer a view into perceptions of the area, local quality of life, transportation patterns, behavior patterns, and the role the neighborhood plays in the lives of visitors and residents.

KEY STATISTICS

<table>
<thead>
<tr>
<th>%</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>42%</td>
<td>Percent of survey respondents who reported arriving in the neighborhood by car.</td>
</tr>
<tr>
<td>39%</td>
<td>Percent of survey respondents who reported arriving in the neighborhood on foot.</td>
</tr>
<tr>
<td>87%</td>
<td>Percent of survey respondents who visit the neighborhood daily or several times a week.</td>
</tr>
<tr>
<td>91%</td>
<td>Percent of survey respondents who think the neighborhood is clean.</td>
</tr>
</tbody>
</table>

KEY FINDINGS

- During the weekday count period, over 7 times as many vehicles were counted as pedestrians or cyclists.
- During the weekend count period, over 4 times as many vehicles were counted as pedestrians or bicyclists.
- About 1/3 of people observed bicycling, walking, or engaging in a stationary activity were female, and 37% of survey respondents were female. According to the US Census, the area within a half-mile radius of the project site is 48% female.
Primary Mode of Transportation to Neighborhood

Note: Width of line indicates percentage.

WHAT HAVE WE LEARNED?

More pedestrians responded that they arrived to the area primarily by car than on foot, by three percentage points. Fifteen percent reported primarily arriving by transit.

Half of the business operators surveyed thought their patrons arrived primarily by car, and 40% thought their patrons arrived primarily on foot. Ten percent responded that their patrons arrived primarily by transit. These findings reveal that business operators’ perceptions generally reflect their customers’ travel patterns.
Frequency of Visits to Neighborhood

WHAT HAVE WE LEARNED?

Frequent visits to an area suggest that it serves as a neighborhood destination.

With 87% of survey respondents visiting the area at least several times a week, this location appears to have strong local significance.

The highest percentage of survey respondents (43%) said they were in the area because they live there, and the next highest percentage of survey respondents (30%) said they were in the area because they work there.

These reasons indicate that while the area does appear to have local significance, frequency of visits appears to most closely be correlated with living or working in the area. Page 20 illustrates the full set of survey responses to the reason for visiting the area, and other pedestrian perceptions.
Perceptions of Neighborhood & Reason for Visit

Neighborhood is clean 91%
Neighborhood is safe 90%
Neighborhood is unattractive 12%

8% Eat/drink, meet friends, music/art, or shopping
8% Passing through
11% Multiple reasons
30% Work here
43% Live here

Note: Size of outline corresponds to percentage. Top percentages are each out of 100; bottom percentages all add to 100.
Multimodal Volumes (WEEKDAY & WEEKEND)

WHAT HAVE WE LEARNED?

On the weekday, a total of 6,421 vehicles were counted over a 24-hour period.

Between 7 AM and 6 PM, 4,541 vehicles were counted, compared to 600 pedestrians and 641 bicycles over the same time period.

During this time period, bicyclists and pedestrians together accounted for over 20% of all travel in the catchment area.

On the weekend day, a total of 5,265 vehicles were counted over a 24-hour period.

Between 11 AM and 6 PM, 1,885 vehicles were counted, compared to 359 pedestrians and 345 bicycles over the same time period.

During this time period, bicyclists and pedestrians together accounted for over 25% of travel in the catchment area.

Note: High auto traffic volumes observed during the weekend period around 11 PM are due in part to traffic exiting a concert at the Staples Center.
Pedestrian Characteristics (SCREENLINE)

WHAT HAVE WE LEARNED?

Over the 11 hour weekday data collection period, a total of 600 pedestrians were counted. Over the seven hour weekend data collection period, a total of 359 pedestrians were counted.

On the weekday, about 55 pedestrians per hour were counted. On the weekend, about 51 pedestrians per hour were counted. Approximately 36% of observed pedestrians were female, which is similar to the percent of bicyclists observed to be female.

On the weekend day, more young and old pedestrians (4-11%) were observed than on the weekday (0-1%). About 3% of pedestrians observed were using a wheelchair, and about 6% of pedestrians observed were using a skateboard.
Bicyclist Characteristics (SCREENLINE)

<table>
<thead>
<tr>
<th></th>
<th>Weekday</th>
<th>Weekend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong way</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Under 16</td>
<td>2%</td>
<td>9%</td>
</tr>
<tr>
<td>Over 65</td>
<td>1%</td>
<td>9%</td>
</tr>
<tr>
<td>No helmet</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Sidewalk</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Female</td>
<td>36%</td>
<td>33%</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?

Over the 11 hour weekday data collection period, a total of 631 bicyclists were counted. Over the seven hour weekend data collection period, a total of 345 bicyclists were counted.

On the weekday, about 57 bicyclists per hour were counted. On the weekend, about 49 bicyclists per hour were counted.

Approximately 35% of observed bicyclists were female, which is similar to the percent of pedestrians observed to be female.

On the weekend day, more young and old cyclists (9% each) were observed than on the weekday (1-2%).

About 5% of bicyclists observed were not wearing a helmet. Less than 5% were riding on the sidewalk, and less than 5% were riding in the wrong direction.
Stationary Activities

Observed behaviors

<table>
<thead>
<tr>
<th>Activity</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing</td>
<td>12</td>
</tr>
<tr>
<td>Informally sitting</td>
<td>8</td>
</tr>
<tr>
<td>On mobile device</td>
<td>8</td>
</tr>
<tr>
<td>Eating</td>
<td>6</td>
</tr>
<tr>
<td>In a pair</td>
<td>5</td>
</tr>
<tr>
<td>Waiting to cross</td>
<td>3</td>
</tr>
<tr>
<td>Panhandling</td>
<td>2</td>
</tr>
</tbody>
</table>

Observed characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>8</td>
</tr>
<tr>
<td>Young</td>
<td>1</td>
</tr>
<tr>
<td>Elder</td>
<td>1</td>
</tr>
</tbody>
</table>
WHAT HAVE WE LEARNED?

High levels of people engaging in stationary activities can indicate that a public space feels comfortable, safe, and desirable to the people who use it.

Overall, low levels of stationary behavior were observed in the Hope St project area, compared to overall levels of pedestrian, bicycle, and vehicle activity.

In particular, only one person was observed formally sitting, likely because there is currently no place in the public right-of-way within the project area to do so. In contrast, 12 people were observed standing and eight people were observed informally sitting.

Eight out of 26 people observed participating in a stationary activity, or about 31%, were female. This is about four percentage points lower than the observed rates of female pedestrians and bicyclists.
Physical Assets in Public Right-of-Way

HOPE STREET BETWEEN OLYMPIC BOULEVARD AND 12TH STREET

<table>
<thead>
<tr>
<th>Feature</th>
<th>Quantity</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike corral</td>
<td>0</td>
<td>None in the catchment area</td>
</tr>
<tr>
<td>Bike rack</td>
<td>0</td>
<td>None in the catchment area</td>
</tr>
<tr>
<td>Bus shelter</td>
<td>0</td>
<td>No bus stops on the corridor</td>
</tr>
<tr>
<td>Public bench</td>
<td>0</td>
<td>No seating</td>
</tr>
<tr>
<td>Street light</td>
<td>23</td>
<td>Decorative lighting is not pedestrian-scale</td>
</tr>
<tr>
<td>Trash</td>
<td>10</td>
<td>Most do not have trash lids</td>
</tr>
<tr>
<td>Tree</td>
<td>41</td>
<td>Generally mature trees providing adequate to good shade on the corridor</td>
</tr>
<tr>
<td>Planting strip</td>
<td>1</td>
<td>Appears recently installed and provides landscaping</td>
</tr>
<tr>
<td>Private seating</td>
<td>1</td>
<td>Some available with five chairs, three tables outside café</td>
</tr>
</tbody>
</table>
Related Key Assets
HOPE STREET BETWEEN OLYMPIC BOULEVARD AND 12TH STREET

<table>
<thead>
<tr>
<th>Feature</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shade</td>
<td>Combination of tall buildings and a blend of young and mature street trees provides good shade coverage</td>
</tr>
<tr>
<td>Sidewalks</td>
<td>The sidewalks are generally adequate quality and width; some locations impacted by tree roots</td>
</tr>
</tbody>
</table>
Prosperity

Data relating to the prosperity of the area are assembled from three sources: business questionnaires, pedestrian questionnaires, and sales tax receipts. The questionnaires provide insight into merchants’ and customers’ behaviors and perceptions. The tax data provide a quantitative complement to the insights gained through the questionnaires.

KEY STATISTICS

12-2 PM

Busiest time of day on weekends and weekdays as reported by business operators.

$10-30

Average amount of money spent per visit to the area by people who arrived on foot.

60+ MINS

Most common length of stay per visit for all travel modes.

71

Number of active businesses in the study area in 2014.

KEY FINDINGS

Overall, people who reach the area on foot tend to visit most frequently.

Over the last 10 years, the number of businesses in the area has risen dramatically.

Over the last 10 years, business tax revenues have risen considerably.
WHAT HAVE WE LEARNED?

Based on the business operator questionnaire, 12pm - 2pm was the most common response to “When are your two busiest times of day?” for both weekends and weekdays.

The busiest time of day for businesses may correspond to the busiest time of day overall, and may relate to the type of commercial activity that is most common in the area.

On Hope Street, these responses reflect a typical employment-center pattern, with a lot of lunchtime activity during the week, and less activity during the evening.

Note: Opening and closing times are approximate. Number of weekday and weekend responses differs because some businesses are closed on weekends. Pedestrian activity is based on counts described on page 23.

Busiest Times of Day

<table>
<thead>
<tr>
<th>Time</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>12PM - 2PM</td>
<td>5</td>
</tr>
<tr>
<td>5PM - 7PM</td>
<td>10</td>
</tr>
<tr>
<td>2PM - 5PM</td>
<td></td>
</tr>
<tr>
<td>7PM - close</td>
<td></td>
</tr>
</tbody>
</table>

Open - 12PM

12PM - 2PM

2PM - 5PM

5PM - 7PM

7PM - close

Conclusion:

The busiest time of day for businesses may correspond to the busiest time of day overall, and may relate to the type of commercial activity that is most common in the area. On Hope Street, these responses reflect a typical employment-center pattern, with a lot of lunchtime activity during the week, and less activity during the evening.
Spending & Frequency of Visit by Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency of visits</th>
<th>Average amount spent per visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>Daily</td>
<td>$0-5 $5-10 $10-30 $30+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 6 21 13</td>
</tr>
<tr>
<td>Bicycle</td>
<td>Daily</td>
<td>$0-5 $5-10 $10-30 $30+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Daily</td>
<td>$0-5 $5-10 $10-30 $30+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 11 18 12</td>
</tr>
<tr>
<td>Transit</td>
<td>Daily</td>
<td>$0-5 $5-10 $10-30 $30+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 4 7 5</td>
</tr>
</tbody>
</table>

Legend:
- Less than once a month
- Once a month
- Several times a month
- Once a week
- Several times a week
- Daily
Duration of Stay by Mode

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Pedestrian</th>
<th>Bicycle</th>
<th>Vehicle</th>
<th>Transit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10-30</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>30-60</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>60+</td>
<td>40</td>
<td>2</td>
<td>44</td>
<td>17</td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?

What Have We Learned? (Previous Page)
Overall, people who reach the area on foot tend to visit most frequently. Most pedestrians and people who drive to the area reported spending $10 or more on each visit. People who arrive by transit are more evenly distributed across the categories both in terms of frequency of visit and in terms of amount spent per visit.

What Have We Learned? (Above)
Fewer survey respondents used a bicycle as their primary mode of access to the area. Therefore, the small sample may not be representative of bicyclist spending patterns.

The most common length of stay for all modes was one hour or more.
WHAT HAVE WE LEARNED?
The City of Los Angeles collects a business tax for most businesses in the city based on “tax measures”—typically retail/wholesale sales or payments for services received. Tax data were aggregated across all businesses in the study area to protect confidentiality, and reflect overall economic vitality in the area.

Business tax measures were higher in 2014 than in 2005 and overall reflect a strong upward trend over the 10-year period.

WHAT HAVE WE LEARNED?
The number of businesses paying business tax is relatively representative of the total number of businesses in the area; the data do not include businesses that are not required to pay the tax or businesses that evade taxation.

Over the last 10 years, the number of businesses in the area has climbed from about 10 to just over 70.
Context

Demographic information was assembled from the US Census American Community Survey 5-Year Estimates from 2008-2012 (ACS). In addition, demographic information was collected as part of the pedestrian surveys. This section presents findings from both sources, to demonstrate the differences between ACS data and primary data collected by the People St project team.

The differences between ACS data and pedestrian survey data are likely related to the fact that the pedestrian survey captured people who do not live in the area, and are therefore not reflected in the ACS, but who were in the area for work, shopping, or other purposes on the day the surveys were collected.

KEY STATISTICS

- **48%**
 Percent of residents in the area who are female according to the ACS.

- **52%**
 Percent of residents in the area who are male according to the ACS.

- **60%**
 Percent of residents in the area with some college, an Associates degree, a Bachelors degree, or higher, according to the ACS.

- **55%**
 Percent of residents in the area who are under 35 years old, according to the ACS.

- **11%**
 Percent of residents in the area who are over 65 years old, according to the ACS.

- **54%**
 Percent of residents in the area who are White, according to the ACS.

- **28%**
 Percent of residents in the area who are Asian, according to the ACS.

- **38%**
 Percent of residents in the area who identify as Latino or Hispanic, according to the ACS.
WHAT HAVE WE LEARNED?
According to the ACS, the community is 48% female and 52% male. However, the pedestrian survey respondents were 37% female and 63% male.
WHAT HAVE WE LEARNED?
Over 40% of people living in this area have a Bachelor’s degree or higher. An additional 20% have an Associate’s degree or some college.
WHAT HAVE WE LEARNED?
According to the ACS, the majority of residents in this area (75%) are between 18 and 64. About 14% are under 18 years old, and about 11% are over 65.

Compared to the Census' ACS, the pedestrian survey over-represented people between 35-64 years old, and under-represented people between over 65 years old or under 18 years old.
Racial and Ethnic Distribution of Community

Pedestrian Survey

<table>
<thead>
<tr>
<th>Race</th>
<th>Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% American Indian or Alaska Native</td>
<td>1% 28% American Indian or Alaska Native</td>
</tr>
<tr>
<td>24% Asian</td>
<td>0% Asian</td>
</tr>
<tr>
<td>12% Black</td>
<td>14% Black</td>
</tr>
<tr>
<td>0% Native Hawaiian or Pacific Islander</td>
<td>0% Native Hawaiian or Pacific Islander</td>
</tr>
</tbody>
</table>

Ethnicity

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Census</th>
<th>Pedestrian Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>61% White</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>2% Two or more races</td>
<td>3% Two or more races</td>
<td></td>
</tr>
<tr>
<td>32% Latino</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>68% Non-Latino</td>
<td>62% Non-Latino</td>
<td></td>
</tr>
</tbody>
</table>

WHAT HAVE WE LEARNED?

According to the ACS, the predominant racial identity of residents in this area is White (54%) or Asian (28%). Additionally, 38% of residents identify as Hispanic or Latino.

Compared to the ACS, the pedestrian survey over-represented White respondents and respondents identifying as non-Latino.
For information on People St
visit peoplest.lacity.org
e-mail peoplest@lacity.org

facebook: fb.com/ladotpeoplest
flickr: www.flickr.com/groups/peoplest
twitter: @LADOTPeopleSt
twitter: @LADOTPeopleSt

IMAGE CREDITS
Front and back cover: Cullen McCormick
p. 10: LADOT/Jim Simmons
p. 16: LADOT/Jim Simmons
p. 26: LADOT/Jim Simmons
p. 30: LADOT/Jim Simmons
People St is a program of the City of Los Angeles Department of Transportation (LADOT) in collaboration with the City of Los Angeles Departments of Public Works and City Planning, the Office of Mayor Eric Garcetti, and the Los Angeles County Metropolitan Transportation Authority (Metro).

PEOPLE ST PROJECT TEAM

Environmental Graphic Design and Brand Identity
Emily Morishita and Raymond Dang

Application Manual and Project Evaluation Manual
Robin Abad Ocubillo, Parklet Studies

Architecture and Kit-of-Parts Design
Daveed Kapoor, utopiad.org
Rob Berry, Berry and Linné

Information Architecture/Website
Mike Manalo, LADOT

CITY OF LOS ANGELES

Department of Transportation
Seleta Reynolds, General Manager
Dan Mitchell
Zaki Mustafa
Margot Ocañas
Valerie Watson
Mike Manalo
Michelle Mowery
Elizabeth Gallardo
Jay Kim
Tomas Carranza
Christopher Hy
Miles Mitchell
Manoochehr Adhami
Tim Conger
Tony Ho
Tim Frémaux

Bureau of Engineering
Michael Kantor
Lem Paco
Randy Price
Esam Amarragy

Bureau of Street Services
Lance Oishi

Bureau of Contract Administration
Russ Strazella
Zernan Abad

City of Los Angeles Fire Department
Captain Luke Milick

Metro
Julia Salinas

For information on People St
visit peoplest.lacity.org
e-mail peoplest@lacity.org